Here's some information about Chebyshev's Inequality:
Chebyshev's Inequality
Chebyshev's%20Inequality provides an upper bound on the probability that a random variable deviates from its mean by more than a certain amount. It's a powerful result because it holds for any probability distribution, provided that the distribution has a well-defined mean and variance.
Statement
Let X be a random variable with finite expected%20value μ (mean) and finite non-zero variance σ<sup>2</sup>. Then for any real number k > 0,
P(|X - μ| ≥ k) ≤ σ<sup>2</sup> / k<sup>2</sup>
Equivalently,
P(|X - μ| < k) ≥ 1 - σ<sup>2</sup> / k<sup>2</sup>
Key Components
Interpretation
Chebyshev's Inequality tells us that the probability of a random variable being more than k standard deviations away from its mean is at most σ<sup>2</sup>/k<sup>2</sup>. This means that even without knowing the specific distribution, we can still bound the probability of extreme deviations from the mean.
Usefulness
Limitations
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page